RUS
ENG
RUS
ENG
Мобильное
приложение
Обратная
связь
+7 (495) 745-05-51

Эффективность получения сексированных эмбрионов КРС методом in vitro

18.10.2017: Как это осуществляется в "Бетагран - Липецк".


Дмитрий Машталер
старший эмбриолог ООО "Бетагран- Липецк"

В течении последнего времени в России уделяется существенное внимание вопросам в области воспроизводства стада и повышения уровня племенных качеств животных, так как это является краеугольным камнем в отечественном животноводстве. Однако успешное решение данных вопросов невозможно без использования современных методов и технологий, которые уже давно нашли свое применение в странах Запада.

Получение эмбрионов крупного рогатого скота методом in vitro - современный и прогрессивный биотехнологический метод, позволяющий значительно ускорить процесс воспроизводства высокопродуктивных животных. Данный метод состоит из нескольких этапов: извлечение ооцитов из антральных фолликулов яичника (OPU), созревания ооцитов (IVM - in vitro maturation); оплодотворения (IVF - in vitro fertilization) и эмбриональной культуры (IVC - in vitro culture). Важным аспектом данной технологии является то, что получать яйцеклетки от животных доноров можно как прижизненно, используя метод трансвагинальной аспирации, так и от убойного материала (яичники коров с мясокомбината). Получение разделённых по полу эмбрионов - востребованный и перспективный метод, который заключается в оплодотворении яйцеклеток сексированной спермой быков. Оплодотворение яйцеклеток разделённой по полу спермой в отличие от обычной даёт возможность получать особей желательного пола с вероятностью до 93 %. Помимо возможностей в области селекции данный метод имеет и ряд экономических преимуществ, а именно: при пересадке эмбрионов, не разделённых по полу, частота рождения бычков составляет до 55%. Что имеет немаловажное значение в молочном скотоводстве, где есть большая потребность в ремонтных тёлочках с высокой молочной продуктивностью.

Исходя из этого перед коллективом лаборатории ООО «Бетагран- Липецк» была поставлена задача направленная на создание оптимального протокола оплодотворения и культивирования доимплантированных эмбрионов in vitro. Для этого ооциткумулюсные комплексы получали прижизненно из антарльных фолликулов диаметром 2-6 мм от коров доноров методом TAU (транс вагинальной аспирации. После чего ооциткумулюсные комплексы помещались в среду дюльбекко с добавлением с 5% эстральной сыворотки, 4% р-ра гентамицина и р-ра. гепарина. Поиск и морфологическую оценку осуществляли на стереомикроскопе лабораторного класса, Olympus SZ51 при 200 кратном увеличении. Для экспериментов отбирали ооциты средней величины с мелкозернистой ооплазмой, окруженные компактным многослойным кумулюсом. Для дозревания ооцитов использовали среду 199 (Medium 199, Hepes modification, 25mM.) с добавлением 10% эстральной сыворотки крови крупного рогатого скота, Na-пирувата, BSA, 1.0 ЕД / мл лютенизирующего гормона, 10 ME/мл, фолликулостимулирующего гормона, 1,0мкг / мл эстрадиола (спиртовой раствор) и 50 мкг / мл гентамицина.

Ооциты помещали в лунки планшетов в среду созревания в объёмом 500 мкл под минеральным маслом ("Sigma", США) и культивировали в течение 20-24 часов при температуре 38,5-39 в атмосфере 5 % CO2 в воздухе. Для оплодотворения использовали разделённое по полу криоконсервированное семя быков в пайэтах объёмом 0,25 мл из расчёта 1 доза на 30 яйцеклеток. Оттаивание производили при температуре + 37 º С в течении 40 секунд. По той же схеме оттаивалось и обычное семя быков. Получение подвижной фракции сперматозоидов проводили путём центрифугирования в градиенте плотности (р-р перколла) при оборотах ротора центрифуги 300G. Выход подвижных сперматозоидов при центрифугировании в градиенте плотности был больше, чем при использовании метода флотации (Swim Up). Для оплодотворения яйцеклетки перемещались в лунки со средой Fert-TALP объёмом 80 мкл. И инкубировались совместно со сперматозоидами в течении 18-20 часов при температуре 38,5-39 в атмосфере с содержанием 5 % CO2.

После оплодотворения зиготы отмывали в растворе SOF и механически удаляли клетки кумулюса посредством пепетирования при помощи наконечников для денудации ооцитов диаметром 135 мкм. Очищенные зиготы помещались в среду на основе SOF c добавлением BSA, MEM vitamins, MEM Niaa, MEM iaa в лунки планшетов объёмом 500 мкл, покрытые минеральным маслом ( Sigma ,США) и культивировали при температуре 38,5º С в увлажненной атмосфере под газовой фазой (по 5% CO2 и O 2 и 90 % N2) в течение 7-8 суток. Количество оплодотворённых зигот подсчитывали через 48 и 62 часа после оплодотворения.

Для определения эффективности оплодотворения сексированной спермы использовалось заморожено-оттаянное семя пяти быков. Было оплодотворено 1050 яйцеклеток, полученных методом OPU. Из них у 944 началось дробление, средний процент дробящихся яйцеклеток составил 89,93%. Выход доимплонтированных бластоцист от числа поставленных на созревание яйцеклеток составил 29,42%

Таблица 1 Оплодотворяемость и выход эмбрионов сексированное семя

№п/п

Бык

∑ опл. окк

∑ дроб.

% от дроб

Выход бластоцист

% от опл.

% от дроб.

1

Маузер

346

321

93,00%

94

29,28%

27,16%

2

Мосби

358

322

90,60%

96

29,81%

26,81%

3

Коди

121

107

88,45%

50

46,72,%

41,32%

4

Бигшот

92

88

90,88%

32

36,36%

34,78%

5

Инспект

117

106

91,55%

37

34,90%

34,90%

итого

1050

944

89,93%

309

32,73%

29,42%

Во втором случае использовалось обычное заморожено-оттаянное семя от четырёх быков. Было оплодотворено 770 яйцеклеток, полученных методом OPU. Из них у 708 началось дробление, средний процент дробящихся яйцеклеток составил 91,94%. Выход доимплонтированных бластоцист от числа поставленных на созревание яйцеклеток составил 35,58%.

Таблица 2 Оплодотворяемость и выход эмбрионов обычное семя

№п/п

Вид семени

∑ опл. окк

∑ дроб

% от дроб

Выход бластоцист

% от опл.

% от дроб

1

Обычное

770

708

91,94%

274

38,70%

35,58%

2

сексированное

1050

944

89,93%

309

32,73%

29,42%


Таким образом сравнивая вышеперечисленные данные, можно сделать вывод, что оплодотворяющая способность сексированного и традиционного семени не имеет значительных расхождений.


Таблица 3 Сравнительная характеристика и эффективность использования сексированного и традиционного семени при производстве эмбрионов in vitro.


Так разница составила 2,01% в пользу обычного семени. Выход эмбрионов был больше на 6,16 в пользу обычного семени. Несмотря на то, что культивирование эмбрионов производилось на одной культуральной системе, количество полученных эмбрионов in vitro было выше в группе, где использовалось обычное семя. Мы предполагаем, что это связанно с окрашиванием сперматозоидов флуоресцентной краской, из-за чего снижается энергетический запас, что и может обуславливать меньший жизненный потенциал гамет по сравнению с обычным семенем, как следствие - остановку развития некоторых эмбрионов.

Таким образом, наши данные свидетельствуют о том, что разработанный протокол оплодотворения и культуральная система обладает высоким потенциалом и позволяет получать в массовом количестве разделённые по полу эмбрионы по технологии in vitro. А также может использоваться для получения зигот и предимплантационных эмбрионов КРС in vitro для различных биотехнологических программ.

Статья взята с сайта © DairyNews.ru http://www.dairynews.ru/news/effektivnost-polucheniya-seksirovannykh-embrionov-.html

18.10.2017 0
29.12.2025
Новая магия

Правительство России завершает подготовку национального проекта «Технологическое обеспечение биоэкономики». Он объединит передовые решения в сфере биотехнологий, возобновляемых биоресурсов, а также создания новых материалов.

shutterstock_2163470531.jpg

Кажется, ещё 10 лет назад о биоэкономике мало кто слышал, а сегодня на её развитие направлены средства нацпроектов, о биоэкономике в сельском хозяйстве, пищевой промышленности, фармацевтике и в других отраслях говорит национальный лидер. Что же это такое?

Продовольственная и сельскохозяйственная организация ООН определяет биоэкономику как «использование возобновляемых биологических ресурсов, биологических процессов и принципов устойчивого производства товаров и услуг во всех секторах экономики». При этом биоэкономика напрямую связана с достижениями биотехнологии в сельском хозяйстве и промышленности.

Если сказать чуть иначе, биоэкономика – это, по сути, новый способ создания продукта в условиях шестого технологического уклада, рывок в который человечество совершило в 2020-е годы. Этот новый уклад учёные описывают через инженерию живых тканей и организмов с заранее заданными свойствами, искусственный интеллект, беспилотные летательные системы, анализ больших данных и космический мониторинг. Для сельского хозяйства это принципиально новый уровень производительности труда, полная переработка отходов с помощью микроорганизмов, биотехнологическое производство любых молекул и манипуляции с генами, оптимизация геномов живых организмов.

Нацпроект

Координационный центр правительства России сообщает, что новый нацпроект «Технологическое обеспечение биоэкономики» призван обеспечить технологический суверенитет страны, ускорить развитие сельского хозяйства через внедрение биотехнологий, а также создать условия для самореализации граждан.

В своём выступлении на стратегической сессии в марте с. г. премьер-министр Михаил Мишустин подчеркнул, что нацпроект будет носить комплексный характер и формировать фундамент сразу для нескольких направлений.

shutterstock_2079709228.jpg
Михаил Мишустин - премьер-министр Российской Федерации

«В их числе – химия, пищевая индустрия, энергетика, медицина, экология, сельское хозяйство. Все те отрасли, где возможно глубокое внедрение биопроцессов и использование современных форматов производства на индустриальном уровне», – подчеркнул Председатель Правительства.

Он добавил, что ключевая задача национального проекта – консолидировать усилия, мощности и ресурсы, создать конкурентные предприятия, в том числе за счёт модернизации имеющихся, чтобы вернуть позиции одного из глобальных лидеров биотехнологического рынка.

Цели и задачи

Среди других задач проекта «Технологическое обеспечение биоэкономики» можно выделить следующие:

- Технологический рывок в АПК. Нацпроект призван стать платформой для опережающего развития сельского хозяйства и других смежных отраслей за счёт внедрения передовых биотехнологических решений.

- Технологический суверенитет и лидерство: развитие собственной биоэкономики рассматривается как стратегически важный шаг для снижения зависимости от импортных технологий и продукции, а также для занятия ведущих позиций на мировом рынке.

- И наконец, новый национальный проект должен способствовать дальнейшему расцвету науки и производства, а также решению кадрового вопроса для работы в такой новой сфере, как биоэкономика. В конечном итоге новый нацпроект должен привести к росту экономики и повышению уровня жизни в стране.

Ответ на вызовы

Глобальные вызовы в области продовольственной безопасности, связанные с ростом народонаселения планеты и изменением климата, цифровой трансформацией экономики, требуют должного отклика. И здесь «Щёлково Агрохим» даёт достойный ответ сразу по нескольким направлениям.

Прежде всего это обширные селекционно-семеноводческие программы в Орловской области, на Центральном Черноземье и в Краснодарском крае, нацеленные на формирование замкнутого цикла сельскохозяйственного производства. По словам члена-корреспондента РАН Александра Прянишникова, в рамках этой работы «Щёлково Агрохим» создаёт для АПК России системы новых сортов, дополняющих друг друга по комплексу хозяйственных и биологических свойств; обеспечивает программы первичного и оригинального семеноводства достаточными объёмами исходного материала; формирует 100-процентный уровень обеспеченности промышленного семеноводства собственными сортами.

Научный консорциум по селекции

Для решения столь фундаментальных биотехнологических задач «Щёлково Агрохим» задействовует уникальные коллективы учёных из научных институтов по всей стране: от Института фундаментальных проблем биологии РАН и Института общей генетики РАН до ВНИИСБ, ВНИИМК им. В.С. Пустовойта и НИИСХ Северного Зауралья и др. С целым рядом научных учреждений существуют совместные программы исследований. Так, с институтом Цитологии и генетики (ИЦиГ СО РАН) совместная программа работы нацелена на получение константных (не расщепляющихся) форм растений, выявление сопряжённости индексов NDVI с молекулярными маркерами, контролирующих темпы развития растений. С учёными из Института фундаментальных проблем биологии (г. Пущино) ведётся оценка сортовых особенностей по активности фотосинтетического аппарата растений, поиск генетических маркеров, определяющих функционал фотосинтетических и продукционных процессов у растений, и др.

shutterstock_2439062273.jpg

Цифровые двойники

Для тестирования аграрных технологий «Щёлково Агрохим» разработал собственную цифровую новинку – иммерсивного цифрового двойника. Это виртуальная копия реального производства, позволяющая изучать и моделировать сельскохозяйственные процессы в режиме реального времени и проводить виртуальные испытания технологий и сельхозмашин.

Начальник отдела информационных технологий «Щёлково Агрохим» Дмитрий Москвин на конференции в г. Щёлково представил эту разработку компании широкой публике. Двойник повторяет всё, что происходит на промышленном объекте или в теплице, и позволяет моделировать любой процесс – от роста растений до работы оборудования. На основе данных, получаемых от цифрового двойника, можно оценивать потребности в ресурсах, прогнозировать болезни полевых культур и оперативно реагировать на любые изменения, что повышает эффективность работы.

Moskvin_D.A(1).jpg
Дмитрий Москвин - начальник отдела информационных технологий «Щёлково Агрохим»

Система также способна прогнозировать степень износа производственного оборудования, позволяя сократить вероятность его отказов. Новый софт даёт возможность проводить краш-тесты и обучать сотрудников на симуляторе, где ошибки становятся безопасной частью практики, помогая предотвратить реальные инциденты. Следующим этапом развития станет внедрение искусственного интеллекта для автоматизации управления процессами.

Цифровой образ сорта

Прошедшей осенью также было подписано соглашение между «Щёлково Агрохим» и Госсорткомиссией. В рамках совместной работы стороны займутся внедрением цифровых технологий в селекционный процесс. Первым шагом станет реализация пилотного проекта по формированию цифрового образа сортов и гибридов. Этот подход позволит анализировать и прогнозировать фенотипические и генотипические характеристики новых растений в виртуальной среде, что значительно ускорит создание новых сортов, адаптированных для разных регионов страны.

Заключение

Возможности искусственного интеллекта, машинное обучение, доступ к большим данным стали новой магией и навсегда изменили наши подходы к развитию биотехнологий. Никогда раньше у человечества не было такого количества инструментов для анализа и улучшения сложных биологических систем и оптимизации самых разных процессов. Несомненно, развитие биоэкономики ускорит научные открытия в области сельского хозяйства и промышленности и обеспечит технологический суверенитет страны.

54
Показать ещё