RUS
ENG
RUS
ENG
Мобильное
приложение
Обратная
связь
+7 (495) 745-05-51

Хорошая новость - грибы микродохиум не продуцируют микотоксины!

20.05.2017: Не так страшна "розовая парша" на колосе, как её малюют...Статья Гагкаевой Т.Ю., опубликованная в журнале ЗиКР, № 5, 2017

Вегетационный период 2016 года в Краснодарском крае выдался необычно влажным, количество осадков, выпавших в течение мая, в некоторых районах превышало 200 мм. В результате, на генеративных органах озимой пшеницы в период колошения массово наблюдался розовый налёт и обесцвечивание колосковых чешуек, напоминающие фузариоз колоса, вызываемый грибом Fusarium graminearum Schwabe. (см. фото).

Однако дальнейший микологический анализ пораженных колосьев показал, что розовый налёт в подавляющем большинстве случаев представляет собой спороношение грибов рода Microdochium Syd. & P. Syd.

Наиболее часто из грибов этого рода упоминается вид Microdochium nivale (Fr.) Samuels & I.C. Hallett. Со времён его первого описания в 1849 году как Lanosa nivalis Fr. систематическое положение таксона менялось несколько раз. В 1886 году на основе сходства спороношения с грибами рода Fusarium Link, гриб был переименован в F. nivale Ces. ex Berl. & Voglino. В 1983 году номенклатурный статус этого таксона вновь изменился - вид стали называть Microdochium nivale на основании объективной близости (типу образования конидий, морфологии полового спороношения) с другими представителями рода Microdochium [1]. На фото - конидии грибов M. nivale (слева) и F. graminearum (справа), вызывающих паршу колоса.



Существует ошибочное мнение, что гриб M. nivale (устар. F. nivale) образует микотоксин ниваленол (НИВ). Эта заблуждение возникло из-за неточной первоначальной видовой идентификации гриба-продуцента этого микотоксина. Впервые ниваленол был выделен в 1968 году, как метаболит изолята, по морфологическим признакам определенного как F. nivale [2]. По видовому названию гриба было присвоено название этому микотоксину, относящемуся, как и дезоксиниваленол (ДОН), к группе трихотеценовых микотоксинов. Позже этот изолят был заново исследован с помощью молекулярных методов и переопределен как новый вид - F. kyushuense O"Donnell & T. Aoki [3]. Сегодня уже точно известно, что представители рода Microdochium не образуют вторичные метаболиты, токсичные для теплокровных организмов [4].

Изначально вид F. nivale, а впоследствии M. nivale, по морфологическим особенностям был разделён на две разновидности var. nivale и var. majus [1, 5]. Разновидность majus образует более широкие в диаметре конидии, в основном с 3-мя перегородками, тогда как разновидность nivale формирует конидии с 1-3 перегородками [5, 6]. Дальнейшие исследования, в том числе результаты секвенирования фрагментов генома, привели к приданию этим разновидностям статуса отдельных видов M. nivale и M. majus (Wollenw.) Glynn & S.G. Edwards [7]. На фото - кКолонии M. nivale (слева) и M. majus (справа) на питательной среде (КСА, 10 суток)



 Традиционно в российской научной литературе гриб F. nivale (реже M. nivale) упоминают как единственного возбудителя «фузариозной снежной плесени». В то же время по данным европейских исследователей, оба вида M. nivale и M. majus широко распространены на яровых и озимых, культурных и дикорастущих злаковых культурах, и могут встречаться в тканях растений как в отдельности, так и совместно [7, 10, 11]. Результаты, полученные датскими исследователями в последние годы, показали, что содержание M. majus превалировало во всех видах зерновых культур, кроме ржи, в зерне которой чаще встречался М. nivale [10]. В экспериментах латвийских коллег, ДНК M. nivale и M. majus в зерне различных яровых культур выявлены в равных количествах, только в нескольких образцах количество ДНК M. nivale было существенно больше [11].

И, несмотря на то, что M. nivale и M. majus не загрязняют зерно микотоксинами, эти грибы обладают высокой вредоносностью. Согласно данным английских исследователей изоляты M. nivale более агрессивны, чем M. majus, по отношению к проросткам пшеницы, что проявляется в более значительном снижении длины самих проростков и их корней [13]. В то же время, изоляты M. majus были более агрессивны к листьям пшеницы, чем M. nivale. Показано, что устойчивость пшеницы к гнили проростков и инфекции колоса, вызванными разными видами Microdochium, контролируется различными генами и является видоспецифичной.

Грибы сохраняются в зимующих злаковых культурных и дикорастущих растениях, в растительных остатках в виде мицелия и половой стадии Monographella Petr., наличие которой в жизненном цикле грибов способствует их выживанию в неблагоприятных условиях и массовому заражению растений в весенне-летний период.

Мы определили с помощью реал-тайм ПЦР с видоспецифичными праймерами [10] содержание ДНК M. nivale и M. majus в тканях озимой пшеницы трёх сортов, отобранных на полях Краснодарского края летом 2016 года в фазу начала восковой спелости. Анализ количества ДНК этих грибов показал присутствие обоих видов Microdochium в разных частях растений (колос, подколосковый стебель, флаг-лист и стебель). Наименьшее количество ДНК M. nivale обнаружено в тканях подколоскового стержня - 0,46 пг/нг общей ДНК, тогда как количество ДНК этого вида гриба в колосе, флаг-листе и стебле было сходным и составило в среднем 1,6, 3,2 и 3,3 пг/нг общей ДНК, соответственно. ДНК M. majus выявлено в тканях стебля, подколоскового стержня и колоса в среднем от 1,7 до 2,3 пг/нг общей ДНК. Наибольшее количество ДНК этого вида гриба обнаружено в тканях флаг-листа - 7,4 пг/нг общей ДНК, что указывает на приуроченность вида M. majus к инфицированию листьев пшеницы.

В другом исследовании нами установлено присутствие обоих видов Microdochium в зерне 18 сортов озимой пшеницы, выращенных в Краснодарском крае. Количество ДНК M. nivale варьировало в пределах от 0,3×10-2 до 3,6×10-2 пг/нг общей ДНК, для M. majus диапазон варьирования этого показателя был шире - от 2,1×10-3 до 8,4×10-3 пг/нг общей ДНК. Таким образом, в среднем по содержанию биомассы гриба в зерне озимой пшеницы преобладал M. nivale.

Поведен анализ 20 см проростков пшеницы сорта Лебедь, выращенных в стерильной почве при постоянном освещении и 24 ºС из семян, зараженность которых грибами Microdochium была определена микробиологическим методом и составляла от 1 до 26 %. Установлено присутствие M. majus как в стеблях проростков (количество ДНК составило 0,77×10-4 до 29,5×10-4 пг/нг общей ДНК), так и в листьях (от 0,16×10-4 до 1,56×10-4 пг/нг общей ДНК). ДНК гриба M. nivale в этом варианте в тканях проростков не выявлено. При посеве этих же семян после поверхностной стерилизации, количество ДНК M. majus в стеблях и листьях полученных проростков снижалось в 5,8 и 4,3 раза, соответственно. Вид M. nivale выявлен в стеблях проростках (1,94×10-4 - 6,30×10-4 пг/нг общей ДНК) только в зерне одного образца, имевшего наибольшую зараженность грибами Microdochium.

Несмотря на присутствие грибов Microdochium в тканях, на проростках пшеницы не отмечены видимые симптомы заболевания. Это предполагает возможность эндофитного существования этих видов грибов.

Стимулируют рост грибов, приводя к гибели растений, относительно низкие температуры (0-8 ºС) и высокая влажность воздуха [14, 15]. Всхожесть семян озимой пшеницы зависит не только от их зараженности грибами, но и от условий, в которых они прорастают. Показано, что семена с зараженностью 19 % при 6 °С образовывали меньше проростков, чем семена с зараженностью 44 % при 8, 10 и 12 °С [16]. Т.е. семена, зараженные грибами Microdochium, имеют пониженную всхожесть и образуют ослабленные проростки.

Условия затяжной прохладной весны способствуют увеличению вредоносности грибов Microdochium. В весенний период после таяния снега симптомы заболевания «снежная плесень» появляются на полях озимых злаковых растений обычно в виде пятен из ослабленных водянистых растений, покрытых серо-белым или розовым мицелием грибов. Максимальной вредоносности это заболевание достигает после снежной зимы и последующего длительного периода весеннего таяния снега.

Безусловно, что симптомы заболеваний растений, вызываемые разными видами грибов/бактерий, могут быть сходными. Знание этиологии заболевания - необходимая составляющая успеха для снижения его развития и вредоносности. Например, «снежную плесень» могут вызывать не только виды Microdochium, но и другие грибы, в том числе Typhula (Pers.) Fr., Sclerotinia Fuckel и Pythium Nees. Их всех объединяет способность развиваться при низких температурах и повышенной влажности. Именно поэтому заболевание, вызывающее ранней весной очаговые выпадения ослабленных и погибших растений, не следует называть «фузариозная снежная плесень».

В процессе вегетации растений виды Microdochium могут вызывать гнили основания стебля и соломины [12], которые также сложно отличить от фузариозных гнилей, поскольку зачастую они встречаются совместно.

Другим заболеванием, вызываемым грибами Microdochium, является «фузариозный ожог листьев», который проявляется на верхних листьях пшеницы в виде больших водянистых пятен. Впоследствии формируются некрозы, занимающие значительную площадь листовой пластины [9]. В соответствии с вышесказанным, «фузариозный ожог листьев», не является «фузариозным».

Кроме того, грибы Microdochium, наряду с Fusarium, заражают колос и зерно, при

благоприятных условиях формируют на колосковых чешуйках розовый налёт. Поэтому, в связи с распространением грибов Microdochium и Fusarium на зерновых культурах и внешним сходством вызываемых ими симптомов, следует заболевание описывать не как «фузариоз колоса», а как «парша колоса».

Установлено, что инфицированность урожая зерна в значительной степени зависит от осадков в период цветения и не зависит от зараженности исходных семян [16]. Усиление парши колоса, вызванной грибами Microdochium, происходит при 20 °С и выпадении осадков в течение более 20 часов во время колошения [14].

Показано, что протравители семян, содержащие в качестве действующих веществ азоксистробин и флудиоксонил, являются эффективными для снижения гнили проростков, вызванной грибами Microdochium [17, 18, 12]. Однако стробилурины не подходят для защиты колоса, поскольку стимулируют образование грибами Fusarium микотоксина ДОН.!!! Также возникло предположение, что увеличение содержания ДОН в зерне пшеницы в результате обработки колосьев азоксистробином может быть связано со снижением зараженности зерна грибами Microdochium, конкурирующим за субстрат с грибами Fusarium (19, 20), поскольку были выявлены конкурентные взаимоотношения между представителями грибов Microdochium и Fusarium, одновременно присутствующие в растительной ткани [21]. Фунгициды, содержащие в своем составе тебуконазол, показывали бóльшую эффективность в подавлении грибов Fusarium, чем грибов Microdochium [19]. Существует мнение, что фунгициды обладают различной эффективностью против M. nivale и M. majus [11].

Чувствительность к стробилуринам грибов M. nivale/M. majus, выделенных из зерна пшеницы и ячменя урожаев 1957-2007 гг., анализировали в Дании, и появление первых резистентных изолятов были выявлено в 2003 году [10]. Во Франции устойчивые к стробирулинам и бензимидазолу изоляты, большинство из которых относились к виду M. majus, впервые были выявлены в 2007 году [22].

Заболевания зерновых культурах (снежная плесень, гниль проростков и стеблей, ожог листьев и парша), вызываемые грибами Microdochium на территории России требуют не только точной видовой идентификации возбудителей, но и разработки прогноза развития заболевания, в зависимости от складывающихся условий. Необходимы дальнейшие исследования, касающиеся биологии видов грибов Microdochium, их специализации, возможного взаимовлияния с другими представителями микобиоты зерновых культур. Определение избирательности действия фунгицидов, и возможного появления резистентности у грибов Microdochium также входят в круг первоочередных задач исследователей и специалистов фирм по производству химических средств защиты растений.

(Статья приведена без сокращений)

 

Гагкаева Т.Ю. ведущий научный сотрудник ВИЗР

Гаврилова О.П. научный сотрудник

Орина А.С. научный сотрудник

E-mail: t.gagkaeva@yahoo.com

****

Как подтверждение слов, выделенных в статье жёлтым маркером, приводим здесь результаты лабораторных исследований, проведенных в биолаборатории "Щелково Агрохим", по определению эффективности фунгицидов относительно грибов р. Fusarium: Fusarium spp., F. culmorum, F. verticilloides, F. sporotrichoides.

Обратите внимание на график: самым эффективным фунгицидом против накопления трихотеценового микотоксина Т-2 оказался Титул Дуо, содержащий тебуконазол в количестве 200 г/л, немного уступает ему в этом фунгицид Триада, ККР, содержащий тебуконазола 140 г/л.

Обратите внимание на чашки Петри: Титул Дуо и Триада максимально подавляют рост грибов р. Fusarium

 

20.05.2017 0
29.12.2025
Новая магия

Правительство России завершает подготовку национального проекта «Технологическое обеспечение биоэкономики». Он объединит передовые решения в сфере биотехнологий, возобновляемых биоресурсов, а также создания новых материалов.

shutterstock_2163470531.jpg

Кажется, ещё 10 лет назад о биоэкономике мало кто слышал, а сегодня на её развитие направлены средства нацпроектов, о биоэкономике в сельском хозяйстве, пищевой промышленности, фармацевтике и в других отраслях говорит национальный лидер. Что же это такое?

Продовольственная и сельскохозяйственная организация ООН определяет биоэкономику как «использование возобновляемых биологических ресурсов, биологических процессов и принципов устойчивого производства товаров и услуг во всех секторах экономики». При этом биоэкономика напрямую связана с достижениями биотехнологии в сельском хозяйстве и промышленности.

Если сказать чуть иначе, биоэкономика – это, по сути, новый способ создания продукта в условиях шестого технологического уклада, рывок в который человечество совершило в 2020-е годы. Этот новый уклад учёные описывают через инженерию живых тканей и организмов с заранее заданными свойствами, искусственный интеллект, беспилотные летательные системы, анализ больших данных и космический мониторинг. Для сельского хозяйства это принципиально новый уровень производительности труда, полная переработка отходов с помощью микроорганизмов, биотехнологическое производство любых молекул и манипуляции с генами, оптимизация геномов живых организмов.

Нацпроект

Координационный центр правительства России сообщает, что новый нацпроект «Технологическое обеспечение биоэкономики» призван обеспечить технологический суверенитет страны, ускорить развитие сельского хозяйства через внедрение биотехнологий, а также создать условия для самореализации граждан.

В своём выступлении на стратегической сессии в марте с. г. премьер-министр Михаил Мишустин подчеркнул, что нацпроект будет носить комплексный характер и формировать фундамент сразу для нескольких направлений.

shutterstock_2079709228.jpg
Михаил Мишустин - премьер-министр Российской Федерации

«В их числе – химия, пищевая индустрия, энергетика, медицина, экология, сельское хозяйство. Все те отрасли, где возможно глубокое внедрение биопроцессов и использование современных форматов производства на индустриальном уровне», – подчеркнул Председатель Правительства.

Он добавил, что ключевая задача национального проекта – консолидировать усилия, мощности и ресурсы, создать конкурентные предприятия, в том числе за счёт модернизации имеющихся, чтобы вернуть позиции одного из глобальных лидеров биотехнологического рынка.

Цели и задачи

Среди других задач проекта «Технологическое обеспечение биоэкономики» можно выделить следующие:

- Технологический рывок в АПК. Нацпроект призван стать платформой для опережающего развития сельского хозяйства и других смежных отраслей за счёт внедрения передовых биотехнологических решений.

- Технологический суверенитет и лидерство: развитие собственной биоэкономики рассматривается как стратегически важный шаг для снижения зависимости от импортных технологий и продукции, а также для занятия ведущих позиций на мировом рынке.

- И наконец, новый национальный проект должен способствовать дальнейшему расцвету науки и производства, а также решению кадрового вопроса для работы в такой новой сфере, как биоэкономика. В конечном итоге новый нацпроект должен привести к росту экономики и повышению уровня жизни в стране.

Ответ на вызовы

Глобальные вызовы в области продовольственной безопасности, связанные с ростом народонаселения планеты и изменением климата, цифровой трансформацией экономики, требуют должного отклика. И здесь «Щёлково Агрохим» даёт достойный ответ сразу по нескольким направлениям.

Прежде всего это обширные селекционно-семеноводческие программы в Орловской области, на Центральном Черноземье и в Краснодарском крае, нацеленные на формирование замкнутого цикла сельскохозяйственного производства. По словам члена-корреспондента РАН Александра Прянишникова, в рамках этой работы «Щёлково Агрохим» создаёт для АПК России системы новых сортов, дополняющих друг друга по комплексу хозяйственных и биологических свойств; обеспечивает программы первичного и оригинального семеноводства достаточными объёмами исходного материала; формирует 100-процентный уровень обеспеченности промышленного семеноводства собственными сортами.

Научный консорциум по селекции

Для решения столь фундаментальных биотехнологических задач «Щёлково Агрохим» задействовует уникальные коллективы учёных из научных институтов по всей стране: от Института фундаментальных проблем биологии РАН и Института общей генетики РАН до ВНИИСБ, ВНИИМК им. В.С. Пустовойта и НИИСХ Северного Зауралья и др. С целым рядом научных учреждений существуют совместные программы исследований. Так, с институтом Цитологии и генетики (ИЦиГ СО РАН) совместная программа работы нацелена на получение константных (не расщепляющихся) форм растений, выявление сопряжённости индексов NDVI с молекулярными маркерами, контролирующих темпы развития растений. С учёными из Института фундаментальных проблем биологии (г. Пущино) ведётся оценка сортовых особенностей по активности фотосинтетического аппарата растений, поиск генетических маркеров, определяющих функционал фотосинтетических и продукционных процессов у растений, и др.

shutterstock_2439062273.jpg

Цифровые двойники

Для тестирования аграрных технологий «Щёлково Агрохим» разработал собственную цифровую новинку – иммерсивного цифрового двойника. Это виртуальная копия реального производства, позволяющая изучать и моделировать сельскохозяйственные процессы в режиме реального времени и проводить виртуальные испытания технологий и сельхозмашин.

Начальник отдела информационных технологий «Щёлково Агрохим» Дмитрий Москвин на конференции в г. Щёлково представил эту разработку компании широкой публике. Двойник повторяет всё, что происходит на промышленном объекте или в теплице, и позволяет моделировать любой процесс – от роста растений до работы оборудования. На основе данных, получаемых от цифрового двойника, можно оценивать потребности в ресурсах, прогнозировать болезни полевых культур и оперативно реагировать на любые изменения, что повышает эффективность работы.

Moskvin_D.A(1).jpg
Дмитрий Москвин - начальник отдела информационных технологий «Щёлково Агрохим»

Система также способна прогнозировать степень износа производственного оборудования, позволяя сократить вероятность его отказов. Новый софт даёт возможность проводить краш-тесты и обучать сотрудников на симуляторе, где ошибки становятся безопасной частью практики, помогая предотвратить реальные инциденты. Следующим этапом развития станет внедрение искусственного интеллекта для автоматизации управления процессами.

Цифровой образ сорта

Прошедшей осенью также было подписано соглашение между «Щёлково Агрохим» и Госсорткомиссией. В рамках совместной работы стороны займутся внедрением цифровых технологий в селекционный процесс. Первым шагом станет реализация пилотного проекта по формированию цифрового образа сортов и гибридов. Этот подход позволит анализировать и прогнозировать фенотипические и генотипические характеристики новых растений в виртуальной среде, что значительно ускорит создание новых сортов, адаптированных для разных регионов страны.

Заключение

Возможности искусственного интеллекта, машинное обучение, доступ к большим данным стали новой магией и навсегда изменили наши подходы к развитию биотехнологий. Никогда раньше у человечества не было такого количества инструментов для анализа и улучшения сложных биологических систем и оптимизации самых разных процессов. Несомненно, развитие биоэкономики ускорит научные открытия в области сельского хозяйства и промышленности и обеспечит технологический суверенитет страны.

54
Показать ещё