RUS
ENG
RUS
ENG
Мобильное
приложение
Обратная
связь
+7 (495) 745-05-51

Нулевые технологии: повышение эффективности производства зерна и почвенного плодородия

Уровень производства зерна всегда был и остается одним из важнейших показателей экономической самостоятельности, продовольственной безопасности, независимости и благосостояния любой страны. Зерно — это, прежде всего, хлеб — основной и незаменимый источник питания человека. Кроме того, зерно — базовый ингредиент кормов для интенсивного животноводства.

В.И. Двуреченский, РГП ОХ «Заречное», Казахстан

Уровень производства зерна всегда был и остается одним из важнейших показателей экономической самостоятельности, продовольственной безопасности, независимости и благосостояния любой страны. Зерно — это, прежде всего, хлеб — основной и незаменимый источник питания человека. Кроме того, зерно — базовый ингредиент кормов для интенсивного животноводства. Наконец, зерно для государства является важнейшим объектом внешнеэкономической деятельности, и оно может, как и нефть, занимать доминирующе положение на мировом рынке.
Казахстан располагает уникальными природными условиями для производства зерна и в первую очередь непревзойденных по хлебопекарным качествам сильных и твердых сортов яровой пшеницы. Однако эти возможности реализуются далеко не полностью. Уровень производства зерна и вовлечения в отрасль дополнительных ресурсов, межотраслевые связи, инфраструктура пока не полностью отвечают потребностям зернопроизводства, что отрицательно влияет на общее состояние экономики государства. Поэтому, повышение урожайности, увеличение валовых сборов зерна по-прежнему остаются первостепенными задачами всех земледельцев, сельскохозяйственных предприятий различных форм собственности.

До выхода Казахстана из состава СССР, ее агропромышленный комплекс был одним из самых мощных в стране. Республика и сейчас является одним из ведущих производителей зерна в мире. Его годовой сбор после освоения целинных и залежных земель вырос с 5,4 млн т в 1953 г. до 27—28 млн т к концу 1980-х гг., а в 1986—1990 гг. средний годовой сбор зерна составил 25,9 млн т.

После распада СССР и становления Казахстана как независимого государства, с переходом к рыночной экономике, объемы производства зерна снизились до 20 млн т. Этого следовало ожидать. Разрыв действовавшего годами планового механизма взаимосвязей болезненно отразился на экономике государства, включая его аграрный сектор.

Снижение производства зерна связано не только с развалом СССР, хотя это главная причина, но и с падением спроса на зерно. В это время в корне изменился его потребительский баланс. Остановка большинства промышленных предприятий, сокращение рабочих мест, снижение заработной платы повлекло за собой резкое падение покупательной способности населения. Уменьшилось потребление мясной, молочной и другой продукции животноводства. В результате сократилось поголовье всех видов скота и птицы, соответственно потребность в зернофураже снизилась до минимума.

Падение спроса на зерно повлекло за собой снижение его цены. В середине 1990-х гг. экспортная цена зерна не превышала 40 долл/т при прямых затратах на производство 60—70 долл/т. Более того, проведенная либерализация цен на промышленные товары, энергоносители и сдерживание цен на сельскохозяйственную продукцию обострили ситуацию на рынке, подтолкнули село на сокращение посевных площадей, превращение части пашни в залежь.

В последние годы некоторые ученые и политики высказывали мнение о том, что стране нет необходимости производить ежегодно более 15—16 млн т зерна. Мотивировка — невозможность получения высокого урожая, при котором окупались бы вложенные затраты, а объемы производства зерна достаточны для покрытия внутренних потребностей, а также экспорта на уровне 4—5 млн т. Я с этим не согласен. Приведу примерный расчет (табл.1.).

Очевидно, что лишнего зерна в Казахстане нет. Напротив, для того чтобы житель страны питался в соответствии с полной продовольственной нормой и для стратегических запасов, а также экспортировать 5—6 млн т высококачественной пшеницы, стране необходимо производить дополнительно 10 млн т зерна к тому объему, который производится сейчас (16,2 млн т).
Следовательно, чтобы приблизиться к необходимому уровню производства зерна (26,5 млн т) при неизменной предполагаемой площади посева зерновых (14 млн га) предстоит поднять урожайность зерновых культур с 12 до 15—20 ц/га в среднем по стране.
Анализ урожайности зерновых культур в различных странах мира за последние 50 лет показывает, что даже в США и Канаде она не всегда была высокой. Так, в 1960—1970-е гг. она составила 11,1—13,8 ц/га и только в связи с внедрением в 1980-е гг. новой техники и технологий урожайность поднялась до 17 ц/ га в Канаде и до 25 ц/га в США.

Совершенно справедливо мнение некоторых ученых и управленцев, что в наших сложных почвенно-климатических условиях невозможно получить достаточно высокую урожайность, которая позволила бы производителям зерна покрыть затраты на его производство и получить необходимый для дальнейшего развития своих хозяйств доход. Многолетний опыт и производственная практика свидетельствуют, что при использовании традиционной технологии получить урожайность выше 12 ц/га невозможно, в результате чего невозможно обеспечить достаточную рентабельность хозяйств. Поэтому во всем мире ученые и специалисты изучают и обсуждают проблемы деградации и потери плодородия почвы, сохранения и рационального использования влаги в засушливых регионах. Ключевая проблема в традиционном земледелии — постоянное падение плодородия почвы, что тесно связано с плужной, а также и плоскорезной обработкой, когда растительный покров почвы не используется и она остается незащищенной во время выпадения большого количества осадков, при высоких и низких температурах. Использование традиционной вспашки на Урале, вСибири и Северном Казахстане привело к ветровой эрозии почвы, черным бурям, угрозе потерять огромные площади с таким трудом поднятых земель. Но, к счастью, ученые Казахстана добились, что сначала здесь, а потом на Урале и в Сибири своевременно начали разработку новых технологий, коренным образом отличающихся от традициорнной. Благодаря Т.С. Мальцеву и А.И. Бараеву, внедрившим почвозащитную обработку, удалось остановить ветровую эрозию почвы, но, к сожалению, не потерю ее органического вещества.

С начала освоения целины и к настоящему времени содержание гумуса в почве снизилось с 6% до 4%. За 50 лет содержание гумуса в Кустанайской области Казахстана в черноземе обыкновенном уменьшилось с 8,3 до 6,3%, черноземе южном — с 5,3 до 4,2%, темно-каштановой почве — с 4,1 до 3,4%.

Результаты многочисленных исследований показывают, что многолетнее использование глубоких механических обработок отрицательно влияет на химические, физические и биологические свойства почвы.

В процессе эволюции растения выработали способность расти и развиваться в уплотненной почве. При этом корни отмерших растений разлагались там же, где они существовали. В самых верхних слоях почвы отлагались органические остатки наземных частей растений. Их разложение происходило в аэробных условиях. Образовавшиеся для растений питательные вещества, проникали с осадками в более глубокие слои почвы и усваивались корнями растений. По нашему мнению, этот закон необходимо использовать в интересах повышения плодородия почвы. Корни растений располагаются в разных слоях почвы: от самого верхнего до глубины более 1 м. Это не случайно. Такое расположение корней связано с особенностями питания. Разные корни на различной глубине усваивают разные питательные элементы. Почвенные микроорганизмы также располагаются по горизонтам. В верхних слоях преобладают аэробные, в нижних — анаэробные. Ограниченный доступ воздуха в нижний слой почвы создает условия анаэробного разложения органического вещества и образования гумуса. Природа в процессе длительного развития выработала у растений способность оставлять в почве органического вещества больше, чем они сами потребляют. Именно благодаря такой закономерности в течение многих тысячелетий образовалась почва, в т.ч. самая плодородная — чернозем.
Человек, используя вспашку, способствовал резкому изменению условий существования микроорганизмов в сторону увеличения аэробных процессов, ведущих к уменьшению органического вещества в почве и, в конечном итоге, к резкому снижению ее плодородия. Основываясь на своем «ложном опыте, ложных знаниях», вместо того чтобы изучить механизм естественного увеличения плодородия почвы, созданный природой, и разрабатывать на этой основе соответствующие рациональные системы обработки, он пошел ложным путем, игнорируя законы природы.

Северный Казахстан относится к крайне засушливой зоне, и в этих условиях сохранение и рациональное использование влаги имеют если не главное, то исключительное значение. Годовая сумма осадков в этом регионе составляет 200—320 мм, а в период вегетации выпадает 80—120 мм осадков. Поэтому применение нулевой обработки в таких крайне засушливых условиях является крайней необходимостью.
Важный аспект новой (нулевой) технологии — эффективное использование растительных остатков (измельченная масса вегетативной части урожая, стерня).

Стерня играет важную роль в зимнем накоплении влаги. Высокая стерня в 3,5 раза эффективнее защищает почву от ветровой эрозии, чем лежащие на ее поверхности растительные остатки. Нашими исследованиями установлено, что посев по короткой стерне (10—15 см) по сравнению с осенней зябью обеспечивают прирост урожайности на 10%, а по высокой стерне (30—40 см) по сравнению с низкой — на 16%. Это связано с дополнительным накоплением (40—50 мм) продуктивной влаги. При этом результаты были стабильными в течение ряда лет, они не зависели от того, сухим был год или влажным.

Растительные остатки в нулевой технологии должны быть правильно переработаны и равн6омерно распределены по полю. Из всего количества растительных остатков через комбайн в зависимости от высоты среза проходит 40—70%. Чем выше срез, тем меньше растительных остатков проходит через комбайн, что повышает его производительность. Кроме того, высокий срез в дальнейшем значительно облегчает работу по распределению растительных остатков по полю. Из проходящей через комбайн растительной массы почти половину представляют мелкие фракции (полова и др.), которые попадают на землю из решета первой очистки. Другую половину составляет солома, которая измельчается и распределяется в зависимости от устройства и работы механизмов комбайна (измельчителя, разбрасывателя). В нашей практике при подборе валков 9-метровой жаткой (ЖВП-9,1) невозможно было добиться полностью равномерного распределения растительных остатков на всю ширину захвата, поэтому возникла необходимость проведения работ по их равномерному распределению. Эта работа проводится специальными пружинными боронами.

Следовательно, если принимается решение по оставлению растительных остатков, но необходимо предусмотреть несложный технологический процесс по их распределению, который, я думаю, в состоянии выполнить в любом хозяйстве.
Важный элемент нулевой обработки почвы — прямой посев (размещение семян в почве при минимальном ее рыхлении и максимальном сохранении на поверхности поля растительных остатков — стерни, измельченной соломы, мякины, остатков сорняков после обработки гербицидами). Прямой посев эффективен только при достижении высокой культуры земледелия и, в первую очередь, в тех хозяйствах, где успешно осваивают севообороты. Прямой посев — ответственная операция, к которой предъявляются повышенные требования. Недопустимо использование изношенных сошников, т.к. они не обеспечивают равномерную глубину заделки семян, хорошее размещение и присыпание семян почвой, а также качественное подрезание сорняков. При проведении прямого посева необходим постоянный контроль точности соблюдения заданной глубины, что требует тщательной настройки посевных агрегатов и соблюдения оптимальной скорости их движения (6—8 км/ч.) Помимо увеличения производительности в 1,5 раза и снижения затрат на 40%, прямой посев также способствует сохранению плодородия почвы, которое, в свою очередь, обеспечивает прибавки урожая. Так, нами установлено, что за счет прямого посева в почве накапливается на 0,5—2% больше органического вещества, чем при традиционной обработке. Например, в базовом опытном хозяйстве РГП «Заречное» до освоения влагосберегающей технологии (1991 г.) площадь земель со средним содержанием гумуса составляла 4,0 тыс. га, а после ее освоения с внесением полной дозы удобрений в пару (2001 г.) — 9,0 тыс. га. Это, в основном, и способствовало повышению урожайности в хозяйстве с 12,4 до 26 ц/га.

Описанная выше система обработки почвы показала особенно высокую эффективность за ряд лет, не имеющих больших отклонений от среднемноголетнего уровня по осадкам и увлажнению. В погодных же условиях, резко отличающихся от среднемноголетних, требуются корректировки в технологии с учетом применения новых нестандартных агротехнических приемов.
Яркий пример — 2004 г. В этом году наблюдался ранний сход снега и быстрый набор активных температур весной. Уже 20 мая установилась жаркая погода (температура достигала 300С), которая продержалась почти 3 недели. Наличие влаги и высокие температуры вызвали буйное развитие сорняков. Ясно, что за короткий предпосевной промежуток времени было трудно уничтожить активно развивающиеся сорняки, в результате они перерастали до 30 см и наносили непоправимый ущерб урожаю. В этих условиях для прекращения вегетации сорняков мы провели обработку гербицидом на основе глифосата (2,5—3,0 л/га), ни в коем случае не допуская перерастания сорняков выше 15 см. Через 2—3 дня после такой обработки сорняки перестают вегетировать, затем гибнут, превращаются в мульчу, которая покрывает поверхность почвы, предохраняя ее от испарения. Появляется возможность провести прямой посев без предварительной механической обработки. Сошник сеялки закрытого типа в таких условиях продвигается в почве без сопротивления с минимальной нагрузкой, не испытывая препятствия со стороны сорняков, т.к. их корневая система (особенно многолетников) уничтожена.

В 2003 г. наоборот, отмечался недобор суммы положительных температур, и, кроме того, в результате обильных осадков (только в мае их выпало 80,5 мм — двое больше нормы) влажность была повышенной, что стимулировало рост и развитие сорняков, но препятствовало проведению механических обработок по их уничтожению. В этом случае мы также применили химическую обработку глифосатсодержащим гербицидом за 5—7 дней до посева. Уничтожение сорняков вместе с их корневой системой вернуло почву в нормальное рыхлое состояние и дало возможность провести прямой посев без предварительной механической обработки.

После предпосевного уничтожения сорняков гербицидами для яровой пшеницы на очищенных полях создаются благоприятные условия, что обеспечивает хорошее ее кущение и развитие. Предпосевная механическая обработка, напротив, не искореняет сорняки, а лишь подрезает вегетативную массу, стимулируя развития боковых побегов из спящих почек. В дальнейшем многолетние сорняки активно вегетируют, опережая рост и развитие культуры, что приводит к ее угнетению и снижению коэффициента кущения. В этом случае для уничтожения сорняков приходится применить повсходовые гербициды.

Затраты на проведение механической культивации и дополнительной обработки гербицидами практически равны затратам на проведение предпосевной обработки гербицидами, но при предпосевном уничтожении сорняков создаются значительно лучшие условия для роста и развития культуры.

Немаловажную роль в освоении новых технологий играет применение комплексной системы защиты растений от вредных организмов на основе современных препаратов. В последние годы выявлена высокая эффективность применения баковых смесей, как в паровом поле, так и перед посевом яровой пшеницы (табл. 2, 3).
Применение нулевой технологии по сравнению с традиционной позволяет существенно снизить затраты в особенности при применении баковых смесей. В системе предпосевной обработки почвы применение баковых смесей препаратов, не снижая биологической эффективности общеистребительного гербицида, делает технологию прямого посева конкурентоспособной по затратам с традиционной механической подготовкой почвы. Кроме того, технологии нулевой обработки способствуют рациональному использованию дефицитной для региона влаги, поскольку доказано, что одна механическая обработка приводит к потере 12—14 мм продуктивной влаги, что особенно важно в предпосевной период. Отказ от механических обработок дает возможность более полно использовать атмосферные осадки, основного лимитирующего фактора региона. Так, при традиционной технологии растениями используется до 50% атмосферных осадков, а при нулевой — до 75%. Кроме того, использование эффективных и конкурентоспособных по цене гербицидов ЗАО «Щелково Агрохим» — Раундапа, Фенизана, Овсюгена — позволяет снизить затраты на борьбу с сорняками по вегетации яровой пшеницы до 300 руб/га при смешанном типе засоренности.
В результате освоения новой технологии и применения высокоэффективных химических средств защиты растений удалось в производственных условиях на примере базового опытного хозяйства РГП «Заречное» повысить урожайность в среднем за 10 лет с 12,4 ц/га до 26 ц/га и не только полностью предотвратить деградацию почвы, а даже начать процесс восстановления потерянного почвенного плодородия.

Таблица 1. Расчет потребности в зерне Республики Казахстан (население 15 млн человек)

Таблица 3. Сравнительные затраты на внесение гербицидов на яровой пшенице

05.12.2011 0
25.11.2025
Место под солнцем – наше

В августе 2025 года на форуме селекционеров и семеноводов «Русское поле» в Казани впервые вручали премии за селекционные достижения. Три гибрида подсолнечника авторства «Актив Агро» (дочернее предприятие «Щёлково Агрохим») получили награды. Сегодня мы говорим с заместителем директора по науке Виктором Рядчиковым о создании гибридов, заблуждениях, навязанных зарубежными маркетологами, возможностях российской селекции подсолнечника и её дальнейшем пути.

shutterstock_1067240501.jpg

Ryadchikov_Viktor_Viktorovich.jpg
Виктор Рядчиков – заместитель директора по науке: «В основе у «Актив Агро» и «Щёлково Агрохим» наработки, создаваемые годами…»

Виктор Викторович, как давно вы занимаетесь селекционной работой?

В 1983 году начал заниматься семеноводством пшеницы, в 1990-е – ускоренным размножением сортов и линий озимой пшеницы и ячменя, а с 2004 года взялись за селекцию подсолнечника. Костяк нашей команды составили шесть человек, мы работаем вместе уже более 20 лет, основали компанию «Актив Агро».

Как пришла идея заняться селекцией российских гибридов подсолнечника? На рынке было достаточно иностранных, и вообще считалось, что наши учёные сильны в сортовой селекции, но не в гибридной…

Да, в своё время мы занимались продажей семян импортных гибридов. Но всегда понимали, что у российской селекции есть потенциал. Одно из заблуждений, которое сформировали иностранные производители, – в том, что в России нет селекционных достижений, в частности по подсолнечнику. Но генетика в России всегда была лучшей, и селекция подсолнечника активно велась, в том числе гетерозисная, которая используется при создании гибридов. Ей занимался знаменитый академик Василий Степанович Пустовойт, именем которого назван ВНИИМК, а также другие учёные. Отсутствие в нашей стране гибридной селекции подсолнечника – это сказки от иностранцев. Вся мировая селекция пользовалась достижениями профессора Леонида Жданова, который создал заразихоустойчивые сорта, Карла Ивановича Солдатова, который первый в мире в 1970-х годах вывел высокоолеиновый подсолнечник. Получается, что иностранные партнёры пользовались нашими селекционными достижениями по высокой продуктивности и масличности и нам же внушали, что селекции подсолнечника в России нет. Да, надо отдать должное, они создали много прекрасных гибридов, но это обычная работа селекционера. А таких прорывных в селекции подсолнечника достижений, как у Пустовойта, Жданова, Солдатова, у них не было. Зато был хитрый маркетинговый ход – создание химических гибридов.

photo_2025-10-01_10-34-42.jpg
Участки гибридизации «Актив Агро»

Химические гибриды – это гибриды, устойчивые к гербицидам на основе определённых д. в., – имидазолинонов, сульфонилмочевин. Они сейчас очень популярны. Почему вы называете это хитрым маркетинговым ходом?

Я выскажу своё мнение. Кто-то с ним не согласится, но, надеюсь, задумается. Первыми появились классические гибриды подсолнечника, и они требовали междурядной обработки во время вегетации. Вместо того чтобы создать гербицид, к которому классический гибрид обладал бы устойчивостью, западные компании предложили уникальное, прежде всего в плане продаж, решение – гибрид, устойчивый к сорнякам против двудольных. Первыми стали имидазолиноновые гибриды, затем появились гибриды с устойчивостью к трибенурон-метилу. Это дало возможность крупным зарубежным компаниям делать пакетные продажи – семена устойчивых гибридов предлагали совместно с гербицидом. Понятно, что это было гораздо выгоднее, чем продажа семян классического подсолнечника.

Первый гибрид компании «Актив Агро» тоже был классическим?

Да. Мы зарегистрировали его в 2016 году совместно с ВНИИМК. Это была Комета. Затем зарегистрировали Командор.

Сколько времени ушло на создание гибрида?

Мы начали селекционную работу в 2004 году. К 2010-му мы получили шесть родительских линий – одну материнскую и пять отцовских. К 2013-му создали первый гибрид и зарегистрировали его, как я уже говорил, в 2016 году. Затем второй, в 2017-м. Первыми у нас стали четыре классических гибрида. Химические стали появляться на рынке России с 2000 года. Я тогда не верил, что они получат большое распространение. Тем более что первая технология была основана на применении имидазолинонов, а они имеют последействие на культуры в севообороте. Тем не менее, сказалась, видимо, нехватка кадров в АПК – применить однократно гербицид оказалось проще, чем делать несколько междурядных обработок. С момента появления на рынке нашей страны химических гибридов мы начали работу и в этом направлении. Первый гибрид с устойчивостью к имидазолинонам компания «Актив Агро» зарегистрировала в 2019 году. Это был Бомбардир. Первый гибрид Карина, устойчивый к трибенурон-метилу, появился у нас в линейке в 2021 году.

Когда вы только начинали заниматься селекцией подсолнечника, это приветствовалось?

Нас постоянно спрашивали, зачем нам это. А ещё, зачем мы так тщательно калибруем и протравливаем семенной материал. Мы тогда уже понимали, что одной генетики недостаточно. Кстати, по подготовке семян у иностранцев было чему поучиться, что мы и сделали. Сейчас мы с ними конкурируем по «упаковке», и стараемся быть на уровне. А тогда были уверены, что наша работа важна и будет востребована. Так и произошло.

Сколько родительских линий уже наработано в «Актив Агро»?

На сегодня мы имеем 27 материнских линий, урожайных, устойчивых ко многим факторам, и более сотни отцовских, устойчивых к разным гербицидам. Это даёт нам прекрасную возможность для создания гибридов по различным технологиям.

Как изменилась работа компании «Актив Агро» с 2019 года, когда она стала частью команды «Щёлково Агрохим»?

Работа стала более интенсивной, перед нами открылись новые возможности. В 2019 году мы ежегодно проводили около тысячи скрещиваний. Выращивали около 1000 га участков гибридизации. В 2020-м мы провели уже 1500 скрещиваний, в 2021-м – около 4000 и в 2024/25-м – более 6000 скрещиваний. Сейчас под участки гибридизации отведено около 14 000 га. Значительно расширились площади закрытого грунта. Было около 10 соток сетчатых изоляторов, где выращивались материнские и отцовские линии. Сейчас у нас около 4 га сетчатых изоляторов с родительскими формами. Объёмов семян для высева питомников размножения хватает, чтобы обеспечить родительскими линиями новый проект «Хелианта». Наша цель как селекционной компании – получать опытный материал и из него отбирать лучшее, что потом передаётся на ГСИ.

Также «Щёлково Агрохим» профинансировало строительство теплицы, где мы можем проводить всесезонные скрещивания. Нам обновили технопарк, расширили штат селекционеров и производственников. Сейчас речь идёт о строительстве нового селекцентра, где будет всё необходимое: лаборатории, склады, участки орошения. Уже куплен и осваивается под это дело участок земли, практически доделано орошение.

photo_2025-10-01_10-33-31.jpg
Работа в теплице

photo_2025-10-01_10-34-28.jpg
Теплица для всесезонного выращивания родительских форм


Поговорим о гибридах, которые получили награды премии «Селекционный прорыв».


Начнём с классической Фрэи. Что это за гибрид, чем он хорош и есть ли у него перспективы на рынке семян?

Фрэя зарегистрирована в реестре селекционных достижений в 2018 году. Это скороспелый гибрид со сроком вегетации 95-100 дней. Очень пластичный, хорошо себя ведёт и на Алтае, и в Челябинске, и в Кургане. Может и в Краснодарском крае дать приличный урожай. Причём с хорошей масличностью. В наших испытаниях мы получали свыше 50 ц/га. В производстве в среднем давал 33-35 ц/га при оптимальных условиях. В Челябинской области, например, был средний урожай 36,2 ц/га. Несмотря на то, что сегодня все охотятся за химическими гибридами, именно классические (Фрэя, Арэв, Базик показывают и в опытах, и в производстве максимальные урожайность и масличность. Ни разу мы не видели свыше 50 ц/га на химических гибридах. Это и понятно, ведь даже устойчивые гибриды испытывают гербицидный стресс после обработок. Плюс применение гербицидов способствует формированию устойчивых видов сорняков. Например, та же заразиха адаптируется к имидазолинонам и развивает новые расы. Сейчас уже говорят о появлении 8-й и даже 9-й расы. Так что с повсеместным применением гербицидов против двудольных надо быть осторожным. К тому же междурядная прополка, которую используют в классической технологии, обеспечивает приток кислорода к корням, что положительно сказывается на урожайности. В общем, я бы не списывал классические гибриды со счетов. Тем более что сегодня в ассортименте «Щёлково Агрохим» появился гербицид по вегетации для классических гибридов БРАВУРА, КС. Поэтому классические гибриды в линейке компании сохранятся, думаю, Фрэя там тоже займёт своё место.

IMG_5427.jpg
Кречет на Дне сибирского поля в Алтайском крае, 2025 год, демоучасток

Невероятную популярность в стране завоевал Кречет, и он вполне заслуженно получил награду. В чём его секрет, как считаете?

Из имидазолиноновой группы гибридов Кречет наиболее устойчив ко всем болезням. Он – не герой по урожайности относительно таких гибридов, как Бомбардир, Сапсан, Искандер, но при этом в производстве может показать очень высокий результат, близкий к потенциалу. Мы впервые увидели в 2023 году в Ростовской области 45,4 ц/га в фермерском хозяйстве на гибриде Кречет, притом, что его потенциал – 47-48 ц/га. В целом его сеют по всей России и получают достойный результат. Он отличается коротким вегетационным периодом – 102-105 дней, что даёт возможность успешно возделывать его на Урале и в Сибири. С хорошей масличностью. Надеюсь, что скоро выпустим на рынок Кинжал. Это гибрид группы ИМИ-плюс. Будет выращиваться с применением нового гербицида ГЕРМЕС ФОРТЕ, МД.

Сейчас наиболее популярны гибриды с устойчивостью к сульфонилмочевинам. И в этой группе премию «Селекционный прорыв» получила Карина. Эта линия будет продолжена? Какие трибенуроновые гибриды мы увидим в ближайшее время?

Карина – прекрасный высокоурожайный гибрид. В его основе – классическая материнская линия и отцовская с устойчивостью к трибенурон-метилу. Именно поэтому при обработке посевов гербицидом на основе трибенурон-метила наблюдался фитотокс, часть растений могла погибнуть. Тем не менее, например, Челябинская область очень полюбила этот гибрид, там фермеры проводили двойные обработки, разбивая дозу гербицида. Повторюсь, гибрид очень урожайный и занял первое место по этому параметру на испытательной площадке Национального семенного альянса в Казани. Сейчас мы работаем над его усовершенствованием, редактируем, если так можно сказать, материнскую линию по устойчивости к трибенурон-метилу.

Группа эта уже дополнена самостоятельными гибридами Ратник и Солнцепёк (новинка). В этом году передали на испытания гибрид Кондор. Заложили семь экспериментальных гибридов. Так что линейка трибенуроновых гибридов будет расширена. В 2026 году должны произвести приличное количество посевного материала по этой технологии. Будем стараться закрывать потребности наших аграриев.

Виктор Викторович, сегодня на отечественном рынке появилось много компаний, которые заявляют о себе как о селекционерах подсолнечника и готовы разработать новый гибрид буквально за 2–3 года. Возможно ли это, скажем, с использованием современных методов спидбридинга, генотипирования?

В селекции без классических методов отбора и скрещивания не обойтись. Я не говорю о том, что современные методы селекции мы отвергаем. Мы уже паспортизируем свои гибриды. Планируем улучшать отработанные линии с помощью современных методов, но их можно использовать только как прекрасное дополнение к классической селекции на уже готовом линейном материале. Например, для ускоренного выращивания образцов можно пользоваться климакамерами. Все эти методы уже есть в арсенале «Щёлково Агрохим», это совместная работа с ВНИИСБ, но это вспомогательные инструменты. В основе у «Актив Агро» и «Щёлково Агрохим» наработки, создаваемые годами. Речь, прежде всего, идёт о получении устойчивых к различным факторам и болезням однородных продуктивных родительских линий. Этот фундамент позволяет нам сегодня развивать и улучшать селекционные достижения, создавать прекрасные гибриды подсолнечника российской селекции, которые пользуются большим спросом.

34
Показать ещё